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Wind-wave generation by energy and momentum flux 
to the forced components of a wave field 
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Meteorologisches Institut, Universitiit Hamburg, Germany 

(Received 19 April 1976 and in revised form 2 May 1977) 

The response of surface gravity waves with profile [ to forcing by the atmospheric 
pressurep(a) is studied. It is shown that not only the usually considered cross-spectrum 
(p@)[) is responsible for wave growth. All higher-order spectra . . . , [,J also lead 
to wave growth linear in E = p@)/p, and p being the density of air and water respec- 
tively. The bispectral contribution is investigated in detail and is calculated for three 
models of the bispectrum. The results indicate that bispectral contributions are not 
negligible and may account for typically 30-50 %, and possibly more, of the usually 
considered cross-spectral contribution. The bispectral growth mechanism contains 
the fluctuating-stress mechanism discussed by Longuet-Higgins (1969) as a special case. 
As a byproduct new information on the symmetry properties of the hydrodynamic 
coupling off the dispersion shell is obtained. 

1. Introduction 
1.1.  The JONXWAP balance and the resolution of an apparent paradox 

The understanding of wave generation has made considerable progress over recent 
years. The JONSWAP measurements (Hasselmann et al. 1973) led to a balance 
between nonlinear wave-wave interaction, atmospheric input and dissipation. Under 
the assumption that the atmospheric input and dissipation are essentially local in 
wavenumber space, so that they do not transfer energy across the spectrum, a mini- 
mum wave-induced stress described by a minimum wave drag coefficient C, can be 
derived : 

7min = Cwu&* (1 .1)  

With some scatter the atmospheric-input measurements of Dobson (197 l),  Elliott 
(1972) and Snyder (1974) can be described by 

DF(cr)/Dt = pcr( u/c - 1 )  F(cr) (1.2) 

with p varying from experiment to experiment (p = 1.0 for Dobson’s measurements, 
p = 0.2 for Elliott’s and p = 0.1 for Snyder’s). Here U is the 5 m wind speed, F(u) is 
the wave spectrum and c = g/cr is the phase speed. 

Applying (1.2) to a mean JONSWAP spectrum, defined by five parameters, Snyder 
finds that all measured inputs satisfy the minimum input requirements (Snyder 1974, 
figure 19). If, however, we impose the condition that the minimum input must be 
supplied in the range 0 < cr < c h f ,  with uhf z $crmax and urn,, the frequency at  the 
spectral peak, we find that Snyder’s measurements can no longer supply the minimum 
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drag. (We have done the same calculations as Snyder, except that we have replaced 
his value of I, = 0.88 by f ,  = 0.88 - $ and his value of I3 by f, = 0.51 - #(7) 2. A similar 
calculation with a 6(0) instead of a cos20 spread function does not materially alter 
this conclusion, although a 6(O) spread yields a higher input. I n  the latter case Snyder’s 
measurements can supply typically 80 % of the minimum stress.) 

Certainly (1.2) is only a crude parameterizationand wave spectra also scatter around 
the average JONSWAP spectrum. Nevertheless it seems worth while to reconsider the 
assumption that dissipation and atmospheric input are essentially local processes in 
wavenumber space. We shall here be concerned with atmospheric input only. 

Disregarding experimental error, the discrepancies among the measurements of the 
atmospheric source function mentioned after (1.2) can be explained only by assuming 
that the wave-induced pressure is a nonlinear function of wave height. If nonlinear 
terms are import,ant for the transfer of energy and momentum to the free waves of 
the sea, why should they not be able to transfer energy and momentum.to the forced 
surface waves? (Free waves are the Fourier components that lie on the dispersion shell 
for linear waves w2 = kg, i.e. they lie on the resonance shell of the sea surface, i.e. they 
are on-shell. Forced waves are off-shell.) 

As far as transfer is concerned there is no reason why the atmosphere should make 
a distinction between free and forced surface waves. The only reason why the transfer 
to forced waves might be negligible is that forced waves are smaller than free waves. 
(Sometimes the argument is heard that transfer to forced waves must be quadratic in 
e = p(a)/p, or even that there can be no transfer to forced waves, because these are not 
in resonance. Such arguments must be wrong, since the atmosphere is free to take 
advantage of any surface elevation; it does not care about the dynamics of the sea 
surface. Even if the atmosphere did care, we could still construct a machine that would 
generate surface pressure in a way we prescribed.) 

As far as wave growth is concerned the situation is simple for free waves: they 
undergo resonant forcing, they grow and input equals growth. 

For forced waves a paradox seems to arise: although there may be input, we do not 
see any growth. The waves are hydrodynamically forced by free waves, thus not 
resonantly, and additional out-of-phase atmospheric forcing will neither cause growth 
nor shift the phase sufficiently to terminate the input. There is only one possibility: 
the energy and momentum transferred to the forced waves must reappear in the 
wave field as growth of the forcing components. (Of course, this is a theoretical argu- 
ment, but no assumptions regarding wave dynamics are made other than the assump- 
tion that for small waves an expansion in wave slope is feasible and the assumption 
that forcing by atmospheric pressure is small compared with nonlinear hydrodynamic 
forcing.) 

This mechanism and an estimate of its effectiveness constitute the subject of this 
paper. I n  the appendix we discuss the symmetry properties of the hydrodynamic 
coupling. Dissipation processes are not discussed, but we mention that they could 
show a similar spectral behaviour to  the mechanism discussed here. 

1.2. An introductory example 

The mechanism of energy and momentum transfer to forced waves is very simple as 
can be seen from the following analogy, which contains most of the relevant physics. 
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Consider a conservative system of three weakly coupled oscillators, e.g. three LC- 
circuits weakly coupled by nonlinearities, governed by 

ci, + ialal = - iDa,a,, 

a, + ia,a, = - iDalag, 

a, + iu3a3 = - iDa,a,*, 

( 1 . 3 ~ )  

(1.3b) 

( 1 . 3 ~ )  

where the a: are governed by the complex-conjugate equations, D is real and the 
ai are non-dimensional quantities O( 1). The Hamiltonian of this system is 

3 

i = l  
H = C uiaia$ + Da,*a,a, + Dala,*a: = H, + HD (1.4) 

ai = - i aH/aa,*, a: = i aH/aai. (1.5) 
and is conserved since 

Suppose further that the coupling D is weak, i.e. D < ui, and that the frequencies are 
completely mismatched, i.e. 

If the initial conditions a t  t = 0 are (al, a,, a3) = (al, a,, 0 )  the system will behave like 
(al exp ( - iult), a,exp ( - ia , t ) ,  0). At the next order we obtain 

zviui B D, vi = * 1. (1.6) 

At the next highest order we find a detuning of ul and u2 corresponding to the finite 
energy as a3 an? such effects may eventually a t  some very high order allow resonance, 
corresponding to an extremely slow distribution of energy, from the first two modes 
to the: third. 

To fourth order, however, the mean energy in each mode, averaged over times 
uiT 9 1, remains steady and is concentrated in the first two modes. The interaction 
energy HD and the energy in the third mode are small, O((D/u)Z) H,, and are also both 
steady. 

It is intuitively obvious that, if we draw energy out of a, by adding a resistance to the 
circuit or if we add energy by inserting a negative resistance, then a, and a, must 
correspondingly decay or grow. Furthermore, the energy source or sink may be quite 
generally due to an additional forcing term r(t)  in (1 .3~) .  Thus, if now 

a, + icr,a3 = - iDalag + I;r,,,e-iat , rw real, (1.8) 

a$ = Zr,[exp ( - iwt )  - exp ( - iu3t)]/i(u3 - w ) .  (1.9) 

the solution is 

with 

For simplicity, we set r, = 0 at w = us. 
If rw + 0 for w = u1 - u, then the time average a 7  = a f r ,  + 0, and from the analogy 

with a resistance, energy is being supplied to the system, the sign and magnitude 
depending on the phase of (a:, a,, rJ.  

a, = ap+a$ 

- 

In a more formal fashion, (1.5) still holds, but now 

H = H ( t )  = H, + HD + H,, H,. = i(ra,* - r*a3) (1.10) 

and dH/dt = aH/at = i(+a,* -+*a,) + 0. (1.11) 
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Since our solution shows H, to be steady (at least at order rD) it follows that 

d(H,+HD)/dt = O(rD) 9 0. 

It is immediately evident that HD is also steady at  this order, so that it follows that 

(1.12) 
d d 

- i ( + ~ g  - +*a,) = - H - 
aH 
_ -  at dt 0 - ~ [ a 1 ( a 1 a l * ) + a 2 ( a ~ u f ) l '  

This result follows directly from (1.3) and (1.8). Retaining only the relevant terms 
gives 

(1.13) I d1+ i~ ,a l  = -~DcL,u~,  
U,+~U,U, = -iDa1a:*. 

Only the terms oscillating in resonance yield unsteady solutions, since 

a l ( d l a ~ + c i ~ a l )  = 2alRe{-iDa~aza~} = c l A ,  

a,(ci,a~+6fa2) = -2a,Re { - iDu~a ,a~}  = - a , A  

(1.14) 

(1.15) 

and further from (1.7)-(1.9) 

aH/at = i (~+z~-t*~,D) = ( c l - a 2 ) A ,  (1.16) 

so that indeed a t  order rD 
dH dH aH - = o -  -- 
dt dt at 

(1.17) 

Furthermore, to ease the comparison with results given later, we note that 

A = 2 Re {alaf ru, D/(w' -a,)}, o' = u1 - u,. (1.18) 

The interaction we have considered in this example is called a difference interaction, 
while an interaction described by Hf;') = D { u l u 2 a ~ + a ~ a ~ a , }  is called a sum inter- 
action. For the difference interaction we have conservation of action, i.e. 

(1.19) 

so that (for al - u, > 0) an increase of energy H, (positive energy flux aH/at) is asso- 
ciated with an increase of energy and action in the first mode and a decrease in the 
second. For the sum interaction we have an increase of action 

(1.20) 
d d d 
dt dt 
-{u~u:+u,u~} = 2A = 2- ( u ~ u ~ )  = 2 t ( a , a f )  

and in this case a positive energy flux is associated with an increase of energy and 
action in both modes. The same behaviour is found later in the wave case, and we see 
that the differences in behaviour between sum and difference interactions have their 
root in the action balance. 

While the extension to the statistical case is not quite trivial for scattering processes 
(to use K. Hasselmann's notation), for our case, which involves parametric forcing'only, 
the passage to statistics only involves placing angle brackets around steady terms. 

The major differences between this example and the problem of interacting surface 
waves are as follows. 
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(i) We shall have a continuum of modes a(k) .  This presents no obstacles. 
(ii) We have a large range of amplitudes a(k) ,  i.e. large waves at  small k and small 

waves a t  large k. This results in a coupling between long waves and short waves, which 
is strong for the short waves. This presents a problem which, however, will be almost 
completely ignored in this paper, except for a brief discussion in 5 4.2. In  a forthcoming 
paper we show that weak interaction theory can handle the case of strong coupling in 
a deterministic situation. 

(iii) The equations of motion for surface waves do not have the canonical form (I  .3) 
but also contain terms of the type 

U,+icr,a, = -iiD&,a,+ ... . (1.21) 

This feature, combined with the fact that symmetry properties are not so transparent 
in the a, a* representation, has led to a formulation in terms of the second-order 
equation 

f,+crfz, = D,f,z,+D,k,i,+ ... , (1.22) 

but no changes in the principal mechanism discussed above result. 

2. Formulation and mathematical development 
2.1. Notation and preliminaries 

We consider an inviscid homogeneous ocean of infinite depth, use the co-ordinates 
(z, y, z )  or ( 1 , 2 , 3 )  interchangeably and let the mean water surface be at z = 0. Then 
z = C(z, y, t ) ,  say, will describe the water surface andp(z = 5)  = p ( a ) ( ~ ,  y, t ) ,  say, will be 
the surface pressure acting on it. (All motion is considered to be irrotational.) Finally, 
p and p(a) denote the density of air and water. We decompose y into spatial Fourier 
components 

(2.1) 5 = c d ( t )  eik.1 
k 

by Fourier integration over a large area L2, which we can allow to go to infinity in the 
final results. 

Statistical averages will be defined as ensemble averages (denoted by angle brackets), 
with the understanding that sufficiently, but not too widely, separated space-time 
domains will define an ensemble, without going into any of the problems associated 
with such an interpretation. 

The equations of motion for Ck are then 

Here crk = (kg)3  > 0 (k = lkl) is the deep-water wave frequency and N, is an abbrevia- 
tion for all hydrodynamic interaction terms nonlinear in the wave height. Thus (2.2) 
represents a system of weakly coupled oscillators and we shall here mainly be interested 
in the influence of weak cross-coupling due to the influence of p p )  in combination with 
the hydrodynamic coupling Nk. 

We point out that Nk is a time-dependent operator containing terms a’(& cks . . .)/at,, 
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which makes it advisable to consider ( 2 . 2 )  in the frequency domain. With 

0 = w,+iA ( A  > O ) ,  

and 

we obtain 

1 
b(k, w )  = eiWt b,(t) dw, 

(a) 2 
( - w2 + a2) Z(k, w )  = -c a b(k, w )  + a2N(k, w )  + d(k, w )  (2.5) 

with d(k, w )  determined from the initial conditions. The continuation of Z(k, w )  from 
values of w in the upper half-plane to values of w on the real axis then determines the 

P 9  

time development of &: 
d ( t )  = (ime-iwtZ(k,w)dw. 

J - =  

The statistics for the forcing terms of (2.5), given by 

C,, = (bi ... b,di ... dTJ, rn, n = 0, .. : o(, (2.7) 

(here the indices b, and di stand for b(k,, wi) and d(k,, wi;j. then determine the spectra 

and 

From these we can obtain the growth rates and input fluxes. (It is clear that the 
method of ensemble averaging, with ensembles defined as above, introduces certain 
weak constraints on the wavenumber-frequency structure of the forcing statistics 
C,,,. Essentially this means that S(k - k,) S(w - w l )  amplitudes must not develop over 
our averaging times and lengths. If for instance the atmosphere had an extremely 
sharp isolated resonance at k = 0-1 m-1 and w = 0.5 s-l this would show up as a small 
deterministic signal in the surface wave field (even if a t  t = 0 the wave field had no 
such signal), producing a significant coherence between different samples out of our 
ensemble.) ' 

Returning to (2.5) we note that the nonlinear coupling term N has the form 

~ { ~ } ( k , w )  = ;S" SDn(k1,wl; . * - ;  kn,Wn)Z(kz,wz)...Z(k,,wn) 
n=3 

x S(Zki )S(Cwi)S(k ,+k)S(w,+w)dw,  ... dw,dkl ... dk,. (2.10) 

In  the appendix [equations (A 25)-(A 29)] it is shown how to construct the 0% and 
that these are symmetric; thus with ai = (ki ,  wi)  

Dn(a1, . * . , a n )  = Dn(aVl, (2.11) 

with vl, . . . , v, any permutation of i, . . . , n. The relation between these coupling func- 
tions D, and the frequency-independent coupling functions D(kl,  . . . , k,) introduced 
by Hasselmann (1966a, b )  is also discussed in the appendix. 
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For completeness we list the three-point coupling coefficients (for deep water), since 
we shall need these later: 

D(cx,, a2, a3) = (2g)-1 {w! + W: + U: - 2w1 w3 cos (1,3) 

- 2w2w, cos (2,3) - 2w1w2 cos (1,2)}, (2.12) 

where cos (i,j) = cos (ki, kj). Thus (2.5) is an integral equation for Z(k, w )  and for 
sufficiently weak coupling an iterative solution can be found with the help of Feynman 
diagrams. The method is well known, but for completeness a brief description is given 
in the appendix. 

The growth rate of the wave spectrum a t  the wavenumber k is given by 

(2.13) 

T(k, Q) = Im (Z(k, Q + w )  Z( - k, - w ) )  dw. (2.14) with 

Thus, if T(k, Q) has a double pole at Q = 0, dF'(k)/dt will have a steady mean. Simi- 
larly the input fluxes of energy and momentum will have a steady mean if G(k,, Q), 
defined by 

s 
+ W  

G(k, Q) = Imf b(k, Q + + ) Z (  -k, - w ) d w ,  
- w  

(2.15) 

has a pole at  Q = 0. (See also equations (A 7) and (A 8) in the appendix.) 

2.2. The bispectral contributions to the inputJluxes and growth rates 

The bispectrum B(kl, wl; k2, w 2 )  of pressure and two wave components is defined by 

(W, W )  Z(k1, wl)Z(kZ, 02)) = B(k1, ~ 1 ;  k2, ~ 2 ) 8 ( 4 - - ? )  
x a(w% - c;) S(w1+ w2 + ~ 3 )  & ( k i t  k2 + k3), (2.16) 

which describes the limit for large averaging times and large averaging areas of 
averages obtained from standard (fast Fourier transform) time-series analysis. 

If 
d(k,,wn) = L2T 'J L¶T a(x,t)exp[-i(knx-w,t)]dtdx, (2.17) 

+ W  

then a(k,w) = - s a(x,  t )  exp [ - i(kx - wt)] dxdt (2.18) 
(27713 - w  

is the (only, in a generalized sense, existent) limit 

a(k, w )  = lim {ci(k,, O J , ) / ( A E ) ~  Aw 
Ak, A-0 

(2.19) 

and correspondingly we can define Blmn = B(kl, wl; &; w,; k,, wn) by 

( ( Ak)-6 (8, B, B,) = Blmn s"( kl+ k, + k,) 
x 8(w1 + 0, + w,) s"(W$' - &) 8( w: - 0-t). (2.20) 

Here the 8's are discrete approximations of the &functions, e.g. 

(2.21) 
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- 7  

FIGURE 1. The Feynman diagrams corresponding to bispectral transfer expressions (2.28)-(2.34). 
The wiggly line represents the atmospheric pressure. (a )  The pressure component b(a,) can do 
work on the forced wave set up by the free waves Z (  -a,) and Z (  -a,) for a3 = a, +a,. (b)  The 
pressure component b(a,) will produce a forced wave Z(a,) ,  and interaction with the free wave 
Z (  - az)  produces a free wave Z ( a 3 )  (as = a, - az) ,  leading to growth of the wave spectrum a t  a%. 
(The ai for ( a )  and (b )  are not identical.) 

where am, -n is the Kronecker symbol. The factor 

8(w& - a&) = (2am)-l(8(wm - am) + &urn + am)] 

( d a / d k ) A k  < Aw < cr(k). 

arises because a (k,, w,) will have spikes a t  w, = f r ~ ,  for frequency resolutions 

(2.22) 

Thus for practical purposes, we need only the spatial resolution and (2.20) is equivalent 
to  

(Ak)-4 (6(kl) Z”l(k,,) Z”Z(k,)) = Bzzk,, (2.23) 

with k, = -(k,+k,) and v = 1, 

2% t )  = H 5 k  - (v / ia )  tkl (2.24) 

and B$,3n = (4rtna,)F1B(kl,w,; k m ,  1’1am; k,, vzv,). (2.25) 

We shall here however use the representation (2.16). 
The relevant Feynman diagram yielding steady input fluxes is shown in figure 1 (a). 

(2.26) 

The fluxes J will be normalized such that 

J(k) = J (  - k) 

and Jtot = II1J(k)dk  = - J(k)dk, :IF (2.27) 

H and F indicating ‘ half-plane ’ and ‘full plane ’. Figure 1 (a) then yields 

.lE(k) = 2p@) dwwh,(k, w ) ,  (2.28) 

(2.29) 

s 
s J;(k) = 2pp‘4ki dwh,(k,w). 
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Here h, is the imaginary part of h(k, w ) ,  

and 
h(k, W )  = hl(k, W )  +ih,(k, w ) ,  

w 3 ,  w3) = Q(a3, a,, a,) B(a1, a,) w4 - a%) s 

661 

(2.30) 

in which ai = (k i ,wf) .  Similarly, if the wave energy and momentum are again 
normalized according to (2.26) and (2.27), i.e. 

E(k)  = E( - k ) ,  Etot = 2 E(k)dk ,  
s r  

we have (2.32) 

(2.33) 

Here H, is the imaginary part of H = H, + iH,, where 

H(k3, w3) = s d a l  da, 6(a, + a, + a3) &(c: - w f )  

x &(a% - (0%) g' D3(a3, 012) B ( a 2 ,  (2*34) ((4 - 4) 
The formulae for growth rates and fluxes can readily be read off the diagrams. The 
explanation for the factor 4 instead of the perhaps expected factor 2 in (2.33) is that 
in (2.34) the contribution from D3(a3, a,, a,) is suppressed. 

Figure 1 (a) shows how the pressure b, can transfer energy and momentum to the 
wave field by interacting with the forced wave Z, set by up Z: and 2:. Figure 1 ( b )  
shows that a free wave Z, will grow, because forced waves generated by b, can interact 
with Z,* to produce a wave out of phase and coherent with 2,. 

2.3. The energy and momentum balance 

The input fluxes a t  forced frequencies are balanced by growth a t  the eigenfrequencies, 
as can easily be seen from (2.28)-(2.34). Suppose that the bispectrum &al, a,) 
vanishes everywhere unless (a,, a,) is one of the following pairs: 

(Pl,PZ), (PZ,Pl), ( -A, -PA, (-Pm - P A  
Then according to (2.31) input fluxes will occur only at  a3 = p3 = P1+PZ and at  
a3 = -P3. Thus at  k3 = k,  + k ,  we have 

with 

(2.36) 

(2.36) 

The factor 2 arises because both B(/3,, P,) and B(/3,, P1) contribute. 
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On the other hand the growth rates occur at only a, = kp, or a, = +p,. Invoking 
the symmetry of the coupling coefficient D, we see immediately that 

s . 3  H Z ( k l ,  O3) dw3 = pl A ,  (2.37) 

and (2.38) 

Thus from (2.28), (2.29), (2.32) and (2.33) we see how the energy and momentum 
balance is achieved: the input at the forced wave (k, ,o,)  is balanced by growth of 
the forcing waves at (k,, a,) and (k,, a,). 

3. Discussion 
3.1. The sum and difference interaction 

Amusing side results can be obtained if we separately consider the sum and difference 
interaction of two waves a, = (k, ,  a,) and a2 = (k, ,  u,). (There is no loss of generality 
in choosing the frequency positive for both waves.) The sum and difference interactions 
will force two waves a, = a, + 01, and a4 = a1 - a,. The input fluxes at  01, and up are 
proportional to the bispectra B(a,, a,) and B(a,, - a,) respectively. 

Now, considering the difference interaction, let us assume that the energy input 
at k4 was positive, and further that cl > a2 and 

JE(k4) = (a, - a,) A@,, - a,) > 0. 

E = 2PS<CkC-k> a t  a,, "2 

is given by dE(a,)/dt = c~,A(a,, -a2) > 0 (3.2) 

whereas dE(a,)/dt = - a,A(a,, -az) < 0. (3.3) 

(3.1) 

Then we see that the rate of change of wave energy 

Since A(a,, - a,) = - A(a,, - a,) we conclude that, if the difference interaction always 
yields positive energy flux to the wave field, then pair for pair this interaction will 
damp the lower-frequency wave andstimulate the high-frequency wave. On integrating 
over the whole spectrum we see that for a specific frequency a, all waves with ul > a, 
will damp this wave and all waves with al < a, will cause growth, i.e. 

+ a,! 4% a,; - kl, - a,) dkl. (3.4) 
Ul< g* 

Thus where the exact frequency az of zero growth lies depends on the distribution of A ,  
which primarily depends on the bispectrum and thus on the wave spectrum itself. 
Conversely, if the difference interaction always took energy out of the wave field the 
general tendency would be to stimulate low-frequency and damp high-frequency 
waves. 

The same analysis can be applied to the sum interaction, which is, however, less 
exotic; since A(a,, a,) = A(a,, al) we find that positive (negative) flux due to the sum 
interaction results in growth (decay) of the wave field a t  the forcing frequencies. If we 
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allow complicated distributions of A(kl, a,; k,, a,) and A(k,, al; - k,, - v,) then 
obviously the distribution of growth rates over the spectrum can become arbitrarily 
complicated. 

3.2. The relation to the jluctuating-stress mechanism of Longuet-Higgins (1969) 

Longuet-Higgins (1969) has shown that a fluctuating stress a t  the surface will generate 
waves if the stress is in phase with the waves. The argument is not limited to a purely 
viscous stress. A covariance of high-frequency pressure and high-frequencywave slopes 
which varies slowly in phase with a long wave should also lead to growth of the long 
wave. Clearly, such an effect must be included in the foregoing analysis. 

Consider two waves, one slowly varying, Z(k,,a,), a1 = (kl; a,), and one of high 
frequency, Z(k,, a,), a, = (k,; a,). Their interaction will create forced waves 2, and 2, 
at 

Further assume that the bispectra B(a,,a,) and B(a,, -a2) do not vanish; thus 
pressure components p(a3) and p(aJ coherent with Z,Z2 and Z,Z,* respectively are 
present. Thus the space- and time-dependent ensemble averages @(a4) 2,) and 
(p(a3)  2:) are both coherent wikh the long wave and further 

a3 = (k3,w3) = a, fa,, a4 = (k4, u4) = al-a,. 

appears to the long wave as a fluctuating tangential stress. Thus the momentum of the 
long wave will grow, according to 

d 
dt 
-M(k,) = k12Re 

The reader can easily verify that (3.6) is identical to (2.33) to O(a1/a2). (A further dis- 
cussion is given in $4.2.)  Closer agreement would not be meaningful, because the 
concept of averaging over a short time to  obtain time-dependent means does not 
allow a finer resolution of a, than a, t al. 

Within this same interpretation, i.e. time-dependent averages over short times, we 
also see that the high-frequency mean fluxes associated with ( ~ ~ 2 : )  and ( p 3 Z t )  
would be indistinguishable from ( ~ ~ 2 : ) .  For short-time averages the sum of the three 
contributions would be accounted for as (p22z) and therefore be interpreted as flux 
to the wave Z,. However because of the broad bandwidth the uncertainty of the flux 
determined this way at high frequencies is just sufficient to account for the growth of 
the long wave due to the fluctuating stress. If we go to a finer resolution we shall find 
that the high-frequency waves actually grow more slowly than is indicated by the 
energy and momentum input a t  high frequencies, provided that the tangential stress 
causes growth a t  low frequencies. 

Garrett & Smith (1976) have also studied the mechanism of Longuet-Higgins and 
came to the conclusion (their $ 5 )  ‘that a t  most a fraction (k,Z,) of the total wind 
stress 7, can go into long wave momentum ’. Here rS is the rate of transfer of momentum 
to short waves. This statement could be misinterpreted by the casual reader, since 
7, is a short-time average and must not be confused with TS. 

Consider the following case. Let the sum interaction supply 2, with energy and 
momentum a t  the rate 

J(+) = (a, + a,) A (3.7) 
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and let the difference interaction supply 2, a t  the rate 

J(-) = ( a 2  - a,) A(-) = - (a2 -a,) A .  (3.8) 
Thus let A(-) = -A(+). Assuming there is no other input, the total flux a t  high 
frequency is 

all of which appears as long-wave energy and momentum. Garrett and Smith’s state- 
ment is correct, but 7s is the modulus of (3.5), thus 7s is the modulus of the fluctuations 
around TS, which is indeed for our special case exactly a factor (k lZl ) - l  larger than 
the momentum component of (3.9). Garrett & Smith go on to say that in the relation 
& < (k ,Z , )  rs equality is achieved only if 7&, t )  is a series of &functions at  the long- 
wave crests. This statement is correct only if 7 J x ,  t )  2 0 holds, but this side condition 
is not obviously satisfied. Even if we postulate that a reversal of the short-time- 
averaged tangential stress is impossible, such a postulate can be meaningful only if 
scaling conditions are satisfied. It must at  least be possible to define a stable small- 
scale-averaged stress tangential to a (small-scale-averaged) mean surface, and this 
requires a spectral gap between high- and low-frequency waves. For a typical wave 
spectrum there is no gap and while the concept of a fluctuating horizontal (not tan- 
gential) stress can still be used a phase average cannot be defined; the equivalent 
information must now be obtained from cross-spectra, bispectra etc. 

If, then, r,(x, t )  is the fluctuating time series ( p ( x ,  t )  [,*(x, t ) ) T L  averaged over short 
times T and lengths L centred on (2, t ) ,  then the generalization of Garrett & Smith’s 
inequality is the very weak statement 

W k )  w3* ( k ) ( v s ) )  (k). (3.10) 

Note that (rS,7J can be defined as stable variance only around a stable mean 
7&, t )  = 7 ,  so that (7s, 7J contains all the large fluctuations due, for instance, to the 
real part of the low-frequency pressure field. We also see that the bispectral formulation 
is the natural generalization of Longuet-Higgins’ mechanism to a statistical field, and 
that the order of magnitude is not easily estimated, (3.10) being virtually useless, and 
in any case being a much weaker statement than (2.32) and (2.33). 

The method of Garrett & Smith (1976) of slicing the low-frequency spectrum into 
bands, treating each band by itself and letting it interact with high frequencies is 
essentially an approximated bispectral analysis. The interaction of waves a t  similar 
wavenumbers is lost in this treatment, but this presumably introduces no large error 
as discussed in $4.2. 

3.3. Orders of magnitude 

Certainly for truly infinitesimal waves the bispectral transfer expressions should be 
negligible compared with the usually considered cross-spectral mechanism. Thus if 
6 is an average wave slope we should estimate 

s, m PS,, (3.11) 

where S2 is the bispectral and S, the cross-spectral source function. This estimate 
follows from the concept that S2 is proportional to (p*(2)@2)), where the superscript (2) 
indicates a second-order approximation in the wave slope. Thus 

p(2) w a p ,  [(2) w s p  (3.12) 

%A, (3.9) J = J(+)+J(-)  = 2 
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and (3.11) follows. This estimate is crude; it may be quite unreliable even for infinitesi- 
mal waves if the structure of the wave spectrum is taken into account. The reason 
for this is that the relevant coupling parameter is not 6, but rather 8 N (k,Z,), with 
2, a low-frequency wave amplitude and k, a wavenumber typical of the high-frequency 
end of the spectrum. Of course 8 must be averaged somehow over the spectrum. 
A typical value for s” is 8 1: 1.  This is the main reason why our model calculations in 0 4 
yield 

s, 5 8s1. (3.13) 

The reader will of course suspect that the theory collapses for 8 N 1 ; this is not quite so. 
We are still considering the first term of a convergent expansion, but the approxima- 
tion is poor. The situation closely resembles approximating sin8 by s” for values of 
s”w 1. 

4. A model calculation 
4.1. Bispectral models 

Practically nothing is known about the bispectra. We shall now explore some hypo- 
theses in order to arrive a t  order-of-magnitude estimates. For simplicity and for the 
lack of an alternative, we shall reluctantly rely on models based on the assumption 
that the pressure can be expanded in the wave slope. This approach is used as a guide- 
line only, and should not be mistaken as an attempt to formulate a consistent theory. 

Let U ( z )  be the mean wind speed, let ui(cl), ui(c2), p(ul) andp(a,) be wave-induced 
variables linear in c(crl) and c(c,), and let ui(w3) and p(w3) be coherent with c(cl) c(cr2). 
The problem can then be cast into the following framework (see, for example, 
Hasselmann 1968). 

The linear response is described by 

U3(CT1, 2 = 0) = i( u - C1) K1 6, (4.1) 

Lu3(z) = 0, u,(z+Co) = 0. ( 4 3 ,  (4.3) 

Here L is assumed to be a modified Orr-Sommerfeld operator, still of second order but 
in some way or other including effects of turbulent stresses. The solution of 

Lu, = 0) u3(0) = 1, u3(Co) = 0 (4.4) 

is then assumed to yield satisfactory results for the linear problem; thus with 

ki = (k , ,O)  and (kil = K ~ ,  

p(2 = 0) = iT,(k,w),  ul(z = 0) = iT1(L,w) (4.5) 

with 

The transfer function is chosen in such a way that the resulting linear growth rates 
follow the empirical relation given by Snyder & Cox (1966): 
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Although the value of p varies from experiment to experiment between p = 0.1 and 
p = 1.0, this value is of no consequence for this discussion since we shall be interested 
only in the ratio of nonlinear to linear effects. Thus we set p = 1.0. 

The transfer function TI is not uniquely determined by the growth rate, but we shall 
assume that 

(4.8) i k , ( U - c ) u , ( O ) + ~ ~ d U ( ~  = O)/dz = - ik lp(z  = 0) 

is still approximately correct for our modified linear model, thus assuming that turbu- 
lent stresses play only a minor role in (4.8). We can then distinguish three nonlinear 
effects. 

( a )  A nonlinear surface wave will excite a response in the same way as a linear 
surface wave. 

( b )  Nonlinear boundary conditions in the absence of a nonlinear surface wave will 
have a similar effect to a nonlinear surface wave. 

( c )  Nonlinear stresses qij will give rise to nonlinear pressure amplitudes. 
Mathematically it is unreasonable to distinguish between (a )  and (b ) .  However, 

we keep them apart because the effect of (a )  is already completely described by the 
linear theory of the atmospheric response, the pressure transfer coefficient being 
assumed to be known. 

All calculations will be performed with a simplified spectrum for the linear wave 
field, assumed to be unidirectional: 

(4.9) 

For Phillips’ constant a we shall use a = 

all waves propagate in the x direction, i.e. 
For a unidirectional spectrum in which 

ki = (ki ,O),  wi = a(k,) > 0 for ki =- 0, (4.10) 

the product of the coupling constant D and the propagator becomes very simple: 

(4.11) 

Here a$ = (ki ,ui) ,  a3 = - (a,+a,), c3 = a(k3)  and vi = wi/ui  = ki/lkil = ~f: 1.  

4.2. A brief discussion of three models 

We have done calculations for three models A ,  B and C. 
Model A .  We assume that (a )  is the only relevant nonlinear effect. The wind field 

notices the presence of nonlinear forced waves, but nonlinear wind dynamics produced 
by (b )  and ( c )  are neglected. 

Model B. The wind is driven by nonlinear stresses obtained from the linear solution 
and the effects of nonlinear boundary conditions and nonlinear waves are neglected. 
This model produced only small fluxes and growth rates and is not discussed in any 
detail. We mention only that it can damp waves outrunning the wind, even though the 
underlying linear model leaves the waves unaffected in this case. 

Model C. The nonlinear boundary conditions dominate the atmospheric response, 
so that the higher wind velocity on the crests of long waves produces an input to short 
waves which is higher on the crests than in the troughs. 
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Some properties are common to all three models: 
(i) The fluxes contribute over a wider frequency band than that over which the 

growth occurs. Thus wave growth and decay can occur only in the range up < u < uc 
according to (4.9)) whereas the sum interaction results in flux in the range 
2u < u < 2uc and the difference interaction yields flux in the range 0 < u < uc - up. 

Gi) The interaction integrals have considerable contributions from the interaction 
of long waves and short waves. 

The second property means that the models yield a large contribution in the range 
where they are most suspect. (The situation is somewhat complex because the wave 
spectrum falls off so rapidly.) Thus it turns out that the model estimates of Garrett & 
Smith (1976) are probably quite reasonable. Their treatment cannot properly deal with 
the interaction of two waves with similar wavelengths - in this range their analysis 
is inferior to ours - but contributions from this range are not dominant. 

For waves with widely separated wavenumbers their analysis is clearly superior to 
ours, since wave modulation is accounted for with conservation of action: a much 
better approximation than ours, which includes only second-order interactions. In  
one respect our treatment is better, even in this case, because we can consider the 
detailed wavenumber-frequency structure of the atmospheric response instead of only 
small-scale-averaged properties. A treatment which combines the virtues of both 
approaches should be possible and is planned for the future. In  light of these short- 
comings it is quite surprising, and possibly only a fortunate coincidence, that our 
models yield the same order of magnitude for the low-frequency growth rates as 
Garrett & Smith's estimates, namely roughly 30% of the linear input; this is also 
discussed in the summary. 

I n  spite of the questionable quality of our models we show two results to give some 
impression of how the bispectral mechanism might work. We give only a brief dis- 
cussion; and the reader is referred to a longer earlier version of this paper for details of 
the calculations (Hasselmann 1976). 

Considering two wavenumbers k,  and k,  with k,  < k,, we first note that interaction 
produces two forced waves in the side bands a3 = (kl + k,, u, + a,) and a, = (k, - k,, 
u2 - u,). From (4.11) we have 

-%3) = - z(a4) (1  + O(kl/k,)) (4.12) 

and +3)  = k , Z W  (1 + O(kllk2)).  (4.13) 

For k ,Z ,  > 1, (4.13) is only a poor approximation to the WKBJ solution, and Z(a,) 
and Z(a,) are considerably overpredicted in magnitude, which results in the above- 
mentioned deterioration of our models in the range k,  % k,. Nevertheless the relative 
phases are correctly given by (4.12) and this allows us to predict a t  least some qualita- 
tive features of models A and C. 

For model A the pressure amplitude p = p ,  + ip2 has imaginary components 

P 2 ( 0 1 3 )  = YW3(' - ' 3 )  z(a3) (4.14) 

and p2(a4) = - ' 4 )  z(a4) (4.15) 

with ,u = 1 for U - c 2 0 and ,u = 0 otherwise. For cr, 3 cr, the pressure transfer 
coefficient is nearly constant for all three bands a,, a3 and a 4 .  What happens in these 
circumstances can be described in two ways: 

(i) The sum and difference fluxes both feed into the wave system at nearly equal 
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rates. Thus the high- frequency wave Z(a,) receives practically all of the input, while 
at low frequencies the growth due to the sum interaction is cancelled by the decay due 
to the difference interaction. We have the opposite case to the one considered in (3.7)- 
(3.9). (Note that the product D x propagator is squared in (2.36) for model A. )  We call 
model A an odd model because the bispectrum B,(a,, a,) is an odd function of a,. 

(ii) In  the fluctuating-stress treatment we do not see easily how things balance a t  
high frequencies, but in any case the fluctuating stress is obtained from (3.5) as 

&( k, )  = 2 ( k ,  2,) n2 sin (k, x - a, t )  (4.16) 

with n2 related to the (in our model unspecified) real part of the high-frequency 
pressure by n, = 2k, p1(a2)  2,. The stress fluctuates out of phase with Z(a,) and thus 
does not contribute to long-wave growth. 

Touching again on the arguments presented after (3.9)) we note that, even in a 
situation in which we could define a phase average, there would be no obvious relation 
between the magnitude of the fluctuations 87, which are of order k2Z17r2, and the 
mean input, which is determined by the input integral over all frequencies. Even for 
2, sufficiently small, so that k , Z ,  < 1, the postulate that the smali-scale-averaged 
stress should not reverse would imply stringent nonlinear side conditions for the 
atmospheric response. However, the first impression is that there is no dynamical 
basis for such a postulate. One can consider model situations, for instance a spectrum 
with two very narrow peaks, one at high and one at low frequencies. By varying the 
energy in thepeaks, their separation and 7 = p(a)u*,,it should be fairly simple to decide 
whether the postulate is physical or not, since the real part of the pressure amplitude 
can be predicted with reasonable accuracy, perhaps even the imaginary part (Miles 
1957). 

We now turn to model C, which in a sense turns out to be the opposite of A .  Con- 
sidering only the nonlinear boundary conditions and keeping all terms to second order 
(which for k,  k ,  and 2, 9 2, is a very poor approximation), we obtain 

u3(w3)  = - ik3{u1(g1)  + u1(g2) 2(al)}z=0 (4.17) 

and a similar expression for u3(w4) .  
In  (4.17) we relate ul(g) to Z(g) by 

U,(U,Z = 0 )  = ( U - C )  lk lZ(V) ,  (4.18) 

so that u3(w3) is related to z(~,)Z(a,), and finally use p = iT,u3(z = 0) as given by 
(4.6). To O(gl/a2) we find 

P%3) = P f ( W 3 ) 3  P%%) = -Pt%J3). (4.19) 

(These results obtained for g1 < g2 were then used for all (r,, c,) so that the results of 
model A could be used with a simple change of sign in the difference interaction terms.) 

In  (4.19) the equality in size is surprising, but the change from an odd to an even 
model is not. Whereas the bispectrum of model A must by its construction notice on 
which side of the resonance curve the point (k, w )  lies, the bispectrum of model C is 
insensitive to the resonance curve. 

Thus model C behaves like the special case (3.7)-(3.9) and the discussion given 
there applies: the fluctuations Sr are now in phase with the long wave, and IS71 is 
of order (k ,Z , )7 , ,  where 7, is the cross-spectral linear momentum flux to Z,, 
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FIGURE 2. Normalized energy growth rates and fluxes for model A ,  calculated for wave spectrum 
(4.9) with a = 0.01, b = u,/u, = 5 and yo = cpesk/U = 1.0. -, e,, Snyder-Cox input; - - - -, e(+); 
-. .- e(4.  . . . . . jc+,. _. - j(H. , ,  . ,  , 

i.e. r2 = 2k2 Z2p2.  Thus, although the underlying approximations and manipulations 
of model C can hardly be defended, the size of the fluctuations is admittedly large, 
but not completely unrealistic. 

In  figures 2 and 3 we show the non-dimensional energy growth rates e and e(*) and 
energy fluxes j and j(*)? where 

e = e(+)+e(-) ,  j =j(+)+ a Y - 9  1 (4.20) 

( & ) indicating sum and difference interaction contributions, and 

E ( 4  &T = ye(y/) dy, JE(4 a b  = y j (y)  dy, (4.21) 

with y = a/vp, y = aU3 and a and cP as defined in (4.9). The growth rates and fluxes 
e and j also depend on the high-frequency cut-off a, through the parameter b = aC/rp 
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FIGURE 3. Models A and C for b = 7 and yo = 1.0 with the other parameters as before. The linear 
input (not shown) can be taken from figure 2. -, e(C) = e(+)(A) -e(-)(A); -, j(C) = j (+) (A)  
-j(-)(A); . . . . . , e(+)(A), e(-)(A),  upper curve is e(+)(A); - * - ,  j (+ ) (A) ;  - - - - -, j ( - ) (A) .  j (+)(A) =j(C)  
for y > b - 1. Model C, corresponding closely to Longuet-Higgins' fluctuating-stress mechanism, 
shows large bispectral input at high, forced frequencies, balanced by growth concentrated at low, 
free frequencies amounting to 70 yo of the linear input. 

and on the ratio of the wind velocity to the phase speed a t  the spectral peak through 

I n  figure 2 the growth rate el(y) according to the underlying linear Snyder-Cox 
model (1.2) or (4.6) is also shown. All values are proportional to p and we have set 
p = 1.  Figure 2 shows the expected behaviour of the growth rates for model A ,  
although some growth e = e(+) + e(-) z 0.2e, does remain a t  low frequencies as a result of 
the interaction of waves not widely separated in wavenumber. 

Figure 3 shows the results for both models, now for a value of b = 7. Model C in 
particular demonstrates how strongly the distribution of growth rates and fluxes may 
differ. 

At high forced frequencies we observe a large input and of course here there can 
be no growth; this is the input range. At intermediate frequencies we find a balanced 
range where the input approximately balances the growth. At low frequencies, there 

yo = W 0 / U D  = CJU. 
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is hardly any, or even negative, input; this is the growth range. The input at high 
frequencies approximately balances the growth a t  low frequencies. 

The cusps of j reflect the low- and high-frequency cut-offs in the spectrum. For 
y 2 b - 1 the difference flux vanishes and for y 2 b + 1 the low-frequency peak can no 
longer contribute to the flux. This (together with phase-space effects) results in the 
rapid decay of j(+) for y > b + 1. (We have not shown model C for b = 5, but the reader 
can easily obtain the results for this case by changing the sign of j(-) and e(-), thus 
producing e(C)  = e(+)(A) -e(-)(A) and j(C) = j (+)(A) -j(-)(A) in figure 2.) We may have 
overemphasized the role of interactions between short waves and long waves. This 
has already been mentioned above for the low-frequency growth of model A .  Another 
indication is that, in figure 3, j(+) at y = b + 2 = 9 and j(-) at y = b - 2 = 5 are not 
approximately equal as would be the case if long-short wave interactions dominated 
the rest. 

It is evident that for both models the bispectral input is typically 30 yo of the linear 
input and thus not negligible. An odd model such as model A would be of but little help 
should the JONSWAP balance encounter difficulties, since it provides input and 
growth mainly at high frequencies. In  contrast, an even or Longuet-Higgins-type 
model such as model C would fit in very nicely as it would provide growth at  low 
frequencies in addition to the measured input fluxes a t  these frequencies. 

The models are certainly very crude and only qualitative, but they do indicate that 
the bispectral mechanism and specifically its even components corresponding to 
Longuet-Higgins’ mechanism cannot be discarded as inconsistent with gross order- 
o€-magnitude estimates based on u*lu FZ gG. This result is in agreement with that of 
Garrett & Smith (1976), but whereas their result does not imply any correspondence 
between a linear pressure input and a fluctuating stress input, our analysis indicates 
that an increase in the linear mechanism should also result in larger stress fluctuations 
and thus also yield an increase in the bispectral input. Concerning the relative merits of 
our analysis and Garrett & Smith’s (1976), an effort to combine the good features of 
both seems to be worthwhile. 

5. Comparison with experiment 
A direct comparison with experiments is not possible, because bispectra have not 

yet been analysed to the author’s knowledge. The models were presented only for 
order-of-magnitude estimates and not for prediction of flux distributions. The dis- 
crepancies between existing measurements certainly indicate that the atmospheric 
response is highly nonlinear. Some, but not all, of the discrepancies between Dobson’s 
(1971), Elliott’s (1972) and Snyder’s (1974) measurements could be explained by 
bispectral contributions, but the role of bispectral contributions remains speculative 
until bispectra have been obtained. 

6. Summary 
It has been demonstrated that the pressure field can transfer energy and momentum 

to free waves by acting on non-resonant forced waves. The t,ransfer is proportional to 
the bispectrum (pee). The magnitude of the effect has been estimated by a calculation 

F 1 . M  85 19 
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for a simplified model of the bispectra, and found to be non-negligible (typically 30 % of 
the linear input) in this case. 

The distribution of energy and momentum input fluxes may differ strongly from 
the distribution of the resulting growth rates, the input lying at higher frequencies 
than the growth. The effectiveness of bispectral contributions remains uncertain until 
bispectra have been analysed. Should it be established that a linear input cannot 
provide the necessary JONSWAP minimum energy and momentum flux in the low- 
frequency range of the wave spectrum, the bispectral contributions are obvious 
candidates for closing the gap. 

It should be mentioned that Garrett & Smith (1976) arrived at an input to long 
waves of the order of 4 % of the total stress T due to the fluctuating-stress mechanism. 
This model would roughly correspond to our model C, and for a linear input to the 
waves of the order of 0-1-0.2r, this is the same order of magnitude as was obtained in 
our model calculation. By a quite different line of argument Valenzuela & Wright 
(1976) also arrived a t  the same order of magnitude for Longuet-Higgins' fluctuating- 
stress mechanism. 

We agree with Garrett & Smith (1976) that measurements of fluctuating stress 
over waves are desirable, but add that measurements of waves and pressure to high 
(f N 2 Hz) frequencies with series long enough to analyse bispectra will be necessary 
for a consistent analysis in terms of a fluctuating stress. 

This research was supported by the Deutsche Forschungsgemeinschaft. through a 
grant to SFB 94. Numerical calculations were performed a t  the regional computer 
centre RRZN in Hanover. 

Appendix. Feynman diagrams and the symmetry of the coupling coefficients 
Feynman diagrams 

We are looking for a formal solution of the integral equation 

( - w2+ @) Z( -a,) = aZ{eb( -a,) + d( - al) 

with 

+ 5 SD(a1, . .., a,) Z(a,) . . . Z(an) 6(a) da,, . .., da,) (A 1 )  
n=3 

n 

i = l  
ai = (k i ,wi ) ,  a = Z ai. 

(For b 0 and d E 0,  (A 1 )  is the general nonlinear dispersion relation in the sense of 
generalized Kramers-Kronig relations obtained from the causality requirement that 
Z(k, w )  should have no singularities for Im w > 0.) Here d ( a )  is determined by the 
initial conditions and &(a) is a prescribed weak external forcing field. The solution can 
then be obtained in powers of the fields eb + d by iteration, i.e. 
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= 1 + A + &  + . . .  

= 1 +.$. + +... 

FIGURE 4. The integral equation for Z(lc,w) and the iterative procedure. Products of terms 
occurring in the series give rise to Feynman diagrams like, for instance, figure l ( b ) .  

and this process can be visualized with diagrams; see figure 4. Here the single arrow 
stands for the solution Z while the double arrow indicates the field d + eb. Figure 4 can 
be read both as the integral equation (A 1) and as the iteration procedure (A 2). The 
rules for these diagrams are obvious and need not be given here, since this presentation 
is exactly equivalent to the one given by Hasselmann (1966a, b).  

The symmetry of the coupling coeficients 

The fact that the equations of motion for surface gravity waves can be cast into 
a Hamiltonian form (Hasselmann 1966a; Whitham 1966) has the immediate conse- 
quence that the equations of motion take the form 

4 + ivrr(k) a;; = XH:Z;:..,Fn ag . . . a z ,  (A 3 )  

with the coupling coefficients H symmetrical to permutations of the indices 
( - k, - v ;  . . . ; k,, vn).  This seems to close this subsection. However, it should be noted 
that the ai; as used in (A 3) are not easily observable variables. To lowest order we have 

uv k - - Av k - - [ k / v - i v c k  (A 4) 

but if we wish (A 3 )  to be valid up to any order then 

m 

n=2 

A$ = a$ + C - V V i  ... Vn .VL al'n 
-kk,...kn k,  ' . *  kn) 

or 

If we wish (A 3) to be valid up to some order m then also in (A 5)  we need only terms 
up to order m. It is simple to find the defining equation for the C's; this follows from 
the Hamiltonian formulation, but will not be discussed here in any detail; see also the 
last subsection of this appendix. We wish only to emphasize that the price paid for 
(A 3 )  is a complication in terms of the observable variables Ai( t ) .  If, for instance, the 

9-2 
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Ag are Gaussian variables, the a;; are not. Thus statistical averages q2 q3 ag) 
will not vanish if k,, ..., k, cannot be split into complex-conjugate pairs, but will 
contain sixth-order contributions (A@ ... Ag) .  This complicates the use of diagram 
techniques and symmetry properties of the C’s have to be studied. 

Of course, this does not answer the question for which wave field the ai(t)  or the 
Ag(t) are better approximated as Gaussian. (According to Newell (1968) the transfer 
expressions are valid whether or not the field is Gaussian. Newell did not consider 
off-shell dependence of the coupling, and it is not clear to the author whether this 
influences his results.) 

In  any case it is useful to know the symmetries of the coupling whenever we wish 
to express the transfer expressions in terms of directly observable variables, or 
especially, whenever we have external coupling. We proceed to show that the equation 
of motion (2 .2 ) ,  or equivalently (A l), has the property that the D(a,, ..., an) are 
symmetric functions of (a2, . . . , an). The D(a,, . . . , a,) are identical with the frequency- 
independent coupling coefficients if all frequencies lie on the dispersion shell, but differ 
from these otherwise. 

Proof of the symmetry 

We do not give an extensive constructional proof of the symmetry of D(al, . . ., a,), and 
in fact only prove the following lemma. 

Lemma. If assumption ( A )  below is valid then the symmetry of D(a,, . . ., an) follows. 
( A )  We assume that energy and momentum of the wave field both remain steady 

if the spectrum remains steady a t  all wavenumbers. 
Remark. The intention of introducing ( A )  is to ward off all arguments about how the 

energy and momentum of a free wave should be defined. In  fact, ( A )  is not nearly so 
innocent as it may appear at first sight. It is, for example, conceivable that the wave 
energy grows owing to growing bispectra, with spectra remaining stationary. However, 
we shall not dwell on this aspect here. 

We now give an outline of the proof, before the very simple idea gets lost in detailed 
considerations. The surface elevation c(x, t )  is a well-defined variable, the location of 
the air/water density discontinuity. Just as well defined, though more difficult to 
measure, is the atmospheric pressure a t  the surface P ( ~ ) .  Although the energy and 
momentum of a wave field are fairly complicated functions of the wave height the 
fluxes of energy and momentum across the interface are simple. The inatantaneous 
fluxes of energy and momentum averaged over a horizontal area L2 are given by 

(Perhaps one might have expected the length of the surface normal [1+ (c,{ C,J]4 to 
appear in (A 7)  and (A 8), but this factor cancels exactly with the projection of the 
surface length ds onto the horizontal dx; dx/ds  = [1+ (c,i c,J]-&.) 

Now the idea of the proof is simple. We prescribe an external forcing, so that the 
waves do not grow (up to an also prescribed order). This is achieved by suitable non- 
resonant forcing. After an initial transient build-up time for the forced waves, the 
wave field becomes steady. (At least the spectrum becomes steady.) Thus the energy 
and momentum become steady according to assumption ( A ) .  Therefore the time 
averages (JE(t))T and (Ji(t))T must vanish. This does not mean that the spectral con- 
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tributions to these fluxes vanish individually at all wavenumbers concerned, only 
that the total sum vanishes. This can then be shown to be equivalent to the symmetry 
of the coupling. 

As the initial state we now take 4 = 6 = 0; thus in (A l), d ( a )  = 0. The idea is now 
to force the field with n pressure components bi so that the pressure field has n poles at  
the n locations ai = (ki, Qi):  

b(ki) = qi/ (ui  - Qi +is). (A 9) 

The pole strength qi can be chosen arbitrarily, but the locations ai must satisfy the 
constraint 

n 

i = l  
x ai = 0. (A 10) 

For simplicity we shall now introduce additional constraints on the ai, which should 
and can be removed step by step for a complete proof. (The reader is however informed 
at this point that this constraint removal will not be carried through here, but we shall 
see how it can be done in principle.) These additional constraints are that 

(i) no partial sum of the ai shall vanish, i.e. 

2: aj + 0 unless L = (1, ..., n}, 
 EL 

(ii) no wave shall be excited in resonance, i.e. 

X I i  =+ a(Xki) for all partial sums. (A 12) 

Now the solution 2 can be expanded as a power series in the n variables ql, ..., qn. 
Because of (A 12) there will be no growth of the wave spectrum proportional to the 
power q1 . . . qn. Thus the total energy and momentum input proportional to q1 . . . qn 
must also vanish. (This argument involves rather strong assumptions concerning the 
expansion of the solution in a power series in the qi. There may of course be unsteadiness 
due to wave-wave interactions of the excited free waves, if for example 

k i + k 2 + k , + k ,  = 0, Q1+Q2+C&+Q4 + O but a 1 + ~ , + g 3 + a 4 =  0. 

None of this unsteadiness can, however, be proportional to q1 . . . qn. For the anxious 
reader we could also rule out these wave-wave interactions by carefully selecting the 
ki, but this would severely shrink the phase space available to us.) 

The input consists of n terms. If we denote by Zin-l) the wave component propor- 
tional to qz . . . qn, and likewise by 2p- l )  the one proportional to (a; .  . . qn)/qi,  then 
the total energy and momentum transfer is given by 

hCaiqiZp- l )  = 0 (A 13) 

( A  is a constant factor, which we may have overlooked). Defining the total coupling 
of (ql ... qn):i (here ( ) l i  indicates that pi  is missing in the product) in Zi  by 
@n-l)(ai; (al . . . a?&) ;), or 'more briefly @n-l)(ai, (a) l), so that 
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= f + A + _ k + & + A + R 4  

FIGURE 5 .  Diagram showing the definition of the vertex functions G("). 
(The number of legs on the blobs should not be counted for n > 3.) 

for all a( satisfying the constraints (A 10)-(A 12). Now the proof involves two more 
steps. 

Step 1. Here we show 
(i) that s(n-l) may be written as 

&-I) = JJ(n){rW-l) + D(al , . . . , a,)> = II(n)G(n-l), (A 16) 

with n ( n )  a symmetric function of (a1, . . ., a.J, 
(ii) that if &f@-l) is symmetric for all n' < n, then l3- l )  is also symmetric. 
Step 2. If step 1 is taken, then D also satisfies 

Xai D(")(ai, (a);) 5 0, (A 17) 

and we shall show that this implies the symmetry of D. 
Thus, if both step 1 and step 2 are taken we have proved by induction that both 

G(n-1) and D(n) are symmetric functions of their arguments, since we can anchor the 
proof at n = 3 ,  for instance with the aid of (2.12). 
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t G'z' 

FIGURE 6. The structure of the vertex functions. 
(Number of legs on blobs schematic only.) 

Step 1. Figures 5 and 6 show the structure of the relevant diagrams. First, a forcing 

Z(1) = @I)( -ai, ai) q(ai). (A 18) 
factor qi gives rise to 

This is the step by which the pressure double arrows enter a diagram, and to give 
neater diagrams this step is omitted. From there on hydrodynamic couplings D are the 
only ones relevant to us since in the approximation we are considering, each pressure 
component enters each subdiagram only once. 

Thus we first have in all contributions to Zcn-l)(ai, a;) the factor 

Further, we have the contribution given by the n-point coupling constant 
D(a,; (al, . . ., an), ;). (This contribution occurs (n - 1) ! times because of the symmetry in 
the last indices. The factor (n - 1) ! is included in ll.) The factor is then obtained 
from the diagram as the remaining contribution with n - 1 lines entering, so that with 
P Y = -q y +-tJ;., 

(a);) (n - I )  ! = C {G(n-2)(ai; P I .  . . Pn-3, 7 )  Py G(2)( -7; Pn-2, Pn-1) 
Bi 

+ G(n-3)(ai; P, y )  Py G@)( - 7; /9) + . . . + G"'(ai; Pi, y )  Py G@-')( - y ;  Pz . . . an-,)>. (A 20) 
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Here the pi are to be summed over all permutations of (ai, . . . , a,);, and y is chosen such 
that in G@-j) we have (ai + y +,8, . . . p,,-,) = 0. 

Since the functions CPn-j) are symmetric functions of their arguments (inductive 
assumption), is also a symmetric function of its arguments. To see this, consider 
for instance ai = a2 and interchange a, and a2. In  all contributions we either: (i) change 
a term G(n-j)(a2; a, ...) to  G(n-i)(a,; a2 ...), which alters nothing because of the sym- 
metry of G(,-i); or (ii) change G("-j)(a, . . . y )  GG)( - y ;  a, . . .) to G("-j)(y'; . . . a, . . .) 
x G(i)(a,; . . . - y'),  which is a term also contained in the sum Pn-1)(a2; . . .). (We either 
(i) interchange lines within a blob or (ii) interchange blobs.) 

Thus everything has now been proved, except for step 2. We shall now omit the 
index (n). We now have the information 

Zu, D(ai, (a,, . . . , a,):) = 0 (A 21) 

if Xui = 0 

and the additional constraints (A 12) are satisfied. Since 

xui = 0 
i 

we may rewrite (A 21) as 
n 

3 ai Di(a2, . . ., a,) = 0, 
i = 2  

with 

the prime in (al, . . . , a,): indicating that i is missing in the argument list. Our aim is then 
to show that 

D,(a,, ..., a,) = D(ai; (al, ..., a,):) - D(a,; a,, ..., a,), (A 23) 

Di(az, , . . , a,) = 0. (A 24) 

For n < 4 the proof is simple, because except for certain configurations of the ai, 
which can be filled in by continuation, the determinant Ia2a3a41 9 0, so that Di must 
vanish. For n > 4 we unfortunately have nothing simple to offer. (The author is 
convinced that by using the known symmetries of D in the last indices and the 
invariance under reflexions and rotations of the ki a more elegant proof than the 
following monstrosity would be possible.) 

Consider the equations of motion for surface waves: 

t+ ,3+5, i93 , i  = 0 (2 = 61, (A 25)  

(2 = 0, (A 26)  

A $ = O ,  $ - + O  for z + - m  (A 27) 

d + s5+ 4$,i#,i = -F12@ 

We indicate how we would construct the D's in order to deduce some properties. First 
we obtain ( x  = 0) from (A 25): 

The A's are uniquely determined by (A 25) and (A 27). Equation (A 25) can be solved 
iteratively : 
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Â  being linear in the wi. This can then again be inserted into (A 26), using again an 
expansion about x = 0 and thus we finally obtain (A 1); we wish to stress only that 
for any n the D's are homogeneous quadratic forms in the wi. 

Thus in (A 22) we have 

DiC.2, ..., a,) = Z H i j k W j W k  (A 30) 

with H i j k  = H . k j ,  Hijk = H&(k,, ..., kn).  (A 31) 

i, k 

Thus considering the w component of (A 22) only we have for all wi 

m 

and the coefficients of wiwjwk must vanish. Consider, 
then 

Further we have 
H234+ H324+H423 O* 

2 H 2 2 3 + H 3 2 2  E 0 

(A 32) 

for example, (i,j, k) = (2,3,4),  

(A 33) 

(A 34) 

and aaa - (2, ..., n). (A 35) 

(A 36) 

H... = 0, i = 

Now it is sufficient to prove that in addition to (A 35) 

H = H  = H  = O  
233 - 223 - 234 - 

because of the symmetries of the Hi under permutations. To see this, observe that 
the symmetry of the D coupling in the last n - 1 indices, and the definition (A 23) of 
the Di, implies that 

H i j k ( k 2 ,  * - . ,  kn) = H ~ ; ~ j p k ( k v a ,  * * . t  kv,)* (A 37) 

Here v: i - t  vi is any permutation of (2, ..., n)  and p: i+p i  is the inverse permutation; 
p = v-1. 

Further from (A 23) we have 

D Z ( a 2 ,  .-.,an) = -D2(012,  a39  *-.,an) (A 38) 

D3(a1,a3, ...,an) = D2(a3ra2, a * . , a n ) - D 2 ( a 2 , a 3 ,  *..?an) (A 39) 

and D 3 ( a 1 , a 3 ,  .*.,an) = D2(a3>a1, (A 40) 

with Z2  = - (a,+ ... +an) = a,. We also have 

Inserting ( A  30) and w1 = - (02 + . . . + wn) and again using Hi,, = 0, ( A  39) and (A 40) 
yield, writing e = (k4, ..., kn), 

- H223(k1, k2,  e,  + & , 2 3 ( k 3 7  k 2 ,  - H223(k3, k l ,  O .  . (A 41) 

(A 42) 

(A 43) 

H234(k2, k3 ,  = -H234(k l ,  k3 ,  + t (H223+H224)  ( k l ,  k27 e). (A 44) 

Now returning to (A 38), we note that we obtain three additional equations (k ,  = E2) :  

H223(k2, k3, e ,  = H223(k1, k39 

H233(k2, k 3 ,  e ,  = - H233(k1? k3, + 2H!223(k1, k 3 ,  e ) ,  
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We first show that H223 = 0. With (A 34) and (A 37) this also proves that H233 = 0. 
Equations (A 34) and (A 37) yield 

2H2!23(k2, k3,  = - H233(k3, k2 ,  

so that (A 43) yields 

H223(k3, k2, e )  + H223(k3, k,, e)  +Hz,3(k1, k3, e )  = 0, (A 46) 

Hz23(k1, k2, + H223(k3, kl> + Hz23(k2, k3, e, O .  (A 47) 

(A 48) 

and with (A 42) this may be written as 

The sum (A 47) + (A 41) then yields 

H223(k2, k3, e )  + H223(k3, k2, e )  = 0. 

Thus whenever k2 = k3, H223 vanishes. But (A 42) then shows that H223 always 
vanishes, because we can reach any vector k, by varying the set e. 

It remains to be shown that H,,, = 0. Introducing e' = (k5, ..., k,J, we may write 
(A 36) as 

H234(kZ, k3, k4, + H234(k3, k4, k2 ,  e ' )  + HZ3,(k4, k3, k3, e') = O .  (A 49) 

H234(k2, k3,  k3,  O* (A 50) 

HZ3,(k3, k3, e )  = 0, e = (k4, . . ., kn), arbitrary. (A 51) 

If k, = k3 = k,, H . ,  = 0. From (A 44) we see then that also 

Thus from (A 49), observing that H234(a, b ,  c )  = HZ3,(a, c ,  b ) ,  

Again with (A 44) we conclude 

H23,(k1, k3,  

or HZ3, = 0. 

This finally concludes the proof. 
We close with a few remarks on the constraint removal problem. This is obviously 

a purely technical problem, even though it may be complicated mathematically. 
Whenever we encounter a situation where a subset satisfies 2ai = 0, we have balancing 
of input at a lower level and a corresponding singularity of the coupling. These singu- 
larities are removed by considering the cumulants of the forcing pressure field. The 
other constraint, that we should not couple into free waves, is easier to remove and 
clearly corresponds to higher-order forcing of free waves, so that input balances 
growth. 

The relevance of the extended symmetry 

We gain a bit more insight into the necessity for introducing off-shell coupling as soon 
as we have external forcing through a short sketch of the Lagrangian formulation. We 
shall also see that the extended symmetry contains new knowledge, and is not just 
a clumsy presentation of old results. Following Whitham (1966) we introduce the 

Lagrangian L = ( i d x d t :  
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For simplicity L will be varied with respect to 6 and those a’s that already satisfy 
A 0  = 0. 

Introducing [k = i k ,  qk = @k(O) and qk = @k(O) ,  We have 

= L(pk;  qkt qk). (A 55) 

8k = aL/%k, pk = aL/aq& (A 56) 
Further introducing 

we obtain the equations of motion via 

as 

?jk = -aH/aqk, 9, = -aH/ark = 0. (A 60)s (A 61) 

#t+t#, iq5,i+gz = 0 on z = 5. (A 62) 

For the case p(a) = 0 we have sk = 0,  since aL/a+, = 0 yields the pressure condition 

Now if for zero atmospheric pressure 

+k = gO(Pk, qk, sk),  qk = hO(Pk, qk, sk) (A 64) 

[incidentally defining the C coefficients of (A 5) and (A 6)], we see that if p(a) $: 0 we 
have 

Inspection of (A57)  then shows that the equations of motion, which in the zero- 
pressure case reduced to solving (we denote the variable s, by u k  in H,) 

(which can trivially be symmetrized by transforming to a(*) = p T iq) ,  now reduce to, 
since we again have 8k = 0,  

(A 67) I qk = aHO(Pk, qk, uk = -p-lPe&(t))/apk + 71, 
@k = - aHO(pk, qk, uk = -p-lppi(t).o)/aqk + 7 2 ,  

y1 and y2 arising from the contribution - L = -Lo - +p(a) in (A 57). Thus in order to 
solve (A 67) we need to know the function Ho not only on u = 0, but also for u + 0. 
This presumably corresponds to knowledge of off-shell coupling coefficients. This 
aspect has not been studied in detail, but it seems that the knowledge of the coupling 
coefficients D(a,, ..., a,) a t  all those points which can be constructed by adding and 
subtracting the ‘free’ pi = ( u(ki ) ,  ki) is equivalent to complete information about 
the function Ho(p, q, s = 0) and additionally the structure of the 6(ki, vi) in (A 6). The 
information D contains at the remaining points (a1, . . . , a,) should be equivalent to 
information on the functions go and ho for s $; 0 and information about Ho(p, q, s + 0). 
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